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We present an application of the residual-based variational multiscale turbulence model-
ing (RBVMS) methodology to the computation of turbulent Taylor–Couette flow at high
Reynolds number. We show that the RBVMS formulation globally conserves angular
momentum, a feature that is felt to be important for flows dominated by rotation, and that
is not shared by standard stabilized formulations of fluid flow. Weak imposition of Dirich-
let boundary conditions is employed to enhance the accuracy of the RBVMS framework in
the presence of thin turbulent boundary layers near solid walls. Calculation of conservative
boundary forces and torques is also presented for the case of weakly enforced boundary
conditions. NURBS-based isogeometric analysis is employed for the spatial discretization,
and mesh refinement is performed to assess the convergence characteristics of the pro-
posed methodology. Numerical tests show that very accurate results are obtained on rela-
tively coarse grids. To the best of the authors’ knowledge, this paper is the first to report
large eddy simulation computations of this challenging test case.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Rotating turbulent flows are ubiquitous in science and engineering. Their examples include atmospheric and ocean flows
as well as flows about ship propellers, jet engines, and wind turbines. Rotating turbulent flows exhibit a number of features
that are not present in turbulent flows without rotation. For example, in the case of a turbulent flow in a rotating pipe, mean
azimuthal velocity is introduced, which makes the flow no longer unidirectional. Also, due to the effects of centrifugal forces,
turbulence in the near wall region is reduced, while it is increased in the outer region (see, e.g., [42]). The presence of geo-
metrically complex, curved no-slip walls further complicates the physics of rotating flows. However, the practical signifi-
cance of turbulent rotating flows necessitates the development of accurate and efficient complex-geometry numerical
procedures, that are able to predict their behavior in a variety of scenarios.

Resolving all the details of turbulent flows, especially for the cases of practical interest, is computationally prohibitive.
This fact necessitates the use of turbulence modeling. In the vast majority of cases turbulence models, large eddy simulation
(LES) or Reynolds-averaged Navier–Stokes (RANS), are based on adding turbulent or eddy viscosity terms to the numerical
formulation to model the interaction of the small unresolved scales with large scales that can be represented on a given grid.
While good success was achieved with eddy viscosity models on a variety of important turbulent flows, rotating turbulent
. All rights reserved.
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flows still remain a challenge for the eddy-viscosity-based modeling approaches. Eddy-viscosity models rely on the contin-
uous energy transfer from low to high modes in the turbulent flow, i.e., the energy cascade. However, as explained in [47], in
the presence of high flow velocity rotation rates the energy cascade is arrested, rendering most well-accepted eddy-viscosity
models inconsistent in this regime.

In this work we employ the residual-based variational multiscale (RBVMS) turbulence modeling approach recently pro-
posed in [3] (also see [12,24] for earlier references). The modeling paradigm is based on the variational multiscale theory of tur-
bulence [21,26–28,32] and the numerical experience of stabilized methods [11,30] that are residual-based. (In this paper the
term ‘‘residual” refers to the amount by which the discrete solution fails to point-wise satisfy the strong form of the Navier–
Stokes equations in the spatial domain.) Stabilized methods, that have enjoyed great success in large scale, three-dimensional,
complex-geometry flow simulations, may be though of as predecessors of the current approach. The RBVMS framework does
not explicitly use eddy viscosities to represent the effect of the missing subgrid scales on the resolved scales. Instead, the mod-
eling terms are derived directly from a weak (or variational) formulation of the incompressible Navier–Stokes equations.

In the presence of no-slip walls, the RBVMS framework is augmented with weakly-imposed Dirichlet boundary condi-
tions. These were first proposed in [6] in an attempt to enhance the solution accuracy on coarse boundary layer meshes.
The idea of weak enforcement of boundary conditions emanates from the work of Nitsche [41] and the developments in dis-
continuous Galerkin methods. Weak boundary conditions were tested on several turbulent flows in [8,9] and it was shown
that the accuracy of the solution in the domain interior may be dramatically improved by allowing the flow to slip and de-
velop turbulent features on the no-slip wall. The weak boundary condition enforcement has similarities with wall function
modeling approaches, however, the origins of both methodologies are very different.

The RBVMS modeling framework is implemented using isogeometric analysis, a new computational technology proposed
in [25], which is based on higher-order, smooth basis functions employed in computer-aided design and computer graphics
systems. Three-dimensional Non-Uniform Rational B-Splines (NURBS) (see, e.g., [43,14]), which were the first computational
technology implemented within isogeometric analysis, are employed in the computations presented here. NURBS, due to
their very good approximation properties and the ability to efficiently represent many engineering shapes exactly, are very
well suited for turbulent flows [3,1] that also include rotating components [7]. It should be noted that B-splines, which are
progenitors of NURBS, were first successfully employed for boundary layer turbulent flow in [36–38,45].

The combination of RBVMS, weak boundary conditions, and isogeometric analysis gives rise to a powerful framework for
turbulence modeling and simulation. In this work, using the proposed framework, we perform simulations of the Taylor–
Couette flow, which is a flow between two concentric cylinders. The Reynolds number based on the inner cylinder wall speed
and the gap between the cylinders is Re ¼ 8000. This is the highest Reynolds number for which there exists a direct numer-
ical simulation (DNS), recently performed in [15] and used here for comparison. We employ LES-size meshes and perform a
grid convergence study for the Taylor–Couette problem. Earlier attempts to simulate the turbulent Taylor–Couette flow were
made in [40,51], where the authors examined the stability of this flow at low, near critical Reynolds number at which the
transition to turbulence occurs. In Refs. [48,50], the authors employed a stabilized finite element method to compute this
problem, also at low Reynolds number. Only in recent years, several DNS computations of this flow at high Reynolds number
were performed [10,16,44]. However, no LES computations or mesh convergence studies of this test case are reported in the
literature to the best of the authors’ knowledge. This may be attributed to the aforementioned difficulties with eddy-viscos-
ity-based approaches for rotating turbulent flows.

This paper is organized as follows. In Section 2, the strong and weak forms of the incompressible Navier–Stokes equations
are recalled, the discrete RBVMS formulation of the residual-based model is given. The formulation is then augmented with
weak Dirichlet boundary condition terms. Stabilized formulation of the incompressible Navier–Stokes equation is also re-
called for comparison with RBVMS. In Section 3, the derivations of the conservative boundary forces and fluxes for the dis-
crete formulations are presented. It is shown that the RBVMS formulation conserves the global angular momentum, while
stabilized formulations do not. In this section a special emphasis is placed on the extraction of torque that the fluid exerts
on the cylinder walls, a quantity that we use to assess convergence under mesh refinement. In Section 4, numerical results
for the turbulent Taylor–Couette flow are presented in the form of mean and fluctuating azimuthal velocity, angular momen-
tum and torque exerted by the fluid on the cylinder walls. Accurate results on relatively coarse meshes are obtained using
the RBVMS formulation in conjunction with quadratic NURBS. In Section 5, conclusions are drawn.

2. Incompressible Navier–Stokes equations and weakly-imposed Dirichlet boundary conditions

2.1. Strong and weak formulations

Let X � Rd; d ¼ 2;3 denote the spatial domain occupied by the fluid, and let C ¼ @X be its boundary. The fluid is governed
by the Navier–Stokes equations of incompressible flow. The strong form of initial/boundary-value problem is:
Lðu; pÞ ¼ qf in X; ð1Þ
r � u ¼ 0 in X; ð2Þ
u ¼ g on C; ð3Þ
uðx; 0Þ ¼ u0ðxÞ 8x 2 X; ð4Þ
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where
Lðu;pÞ ¼ q
@u
@t
þ qr � ðu� uÞ þ rp�r � ð2lrsuÞ ð5Þ
is the linear momentum Navier–Stokes operator, and
rsu ¼ 1
2
ðruþruTÞ ð6Þ
is the symmetric gradient of the velocity.
Eqs. (1)–(4) are the balance of linear momentum, incompressibility constraint, and boundary and initial conditions,

respectively, q is the fluid density, f is the body force, l is the kinematic viscosity, u is the fluid particle velocity vector,
and p is the pressure. We only consider the Dirichlet problem, which imposes an additional zero-mean constraint on the
pressure field

R
X pdX ¼ 0

� �
. This is done to simplify the exposition and is not a limitation of the proposed methodology. Note

that we can use the incompressibility constraint to obtain an alternative form of the linear momentum equation
Ladvðu;pÞ ¼ qf in X; ð7Þ
where
Ladvðu;pÞ ¼ q
@u
@t
þ qu � ruþrp� lDu; ð8Þ
is the so-called ‘‘advective” form of Lðu; pÞ.
To formulate the weak statement of the problem, we introduce V andW, the trial solution and weighting function spaces,

respectively. V and W are infinite-dimensional. Multiplying (1) and (2) by a test function from W, integrating over X, and
assuming w = 0 on C we arrive at the weak or variational statement of the problem: Find fu; pg 2 V such that fw; qg 2 W,
Bðfw; qg; fu;pgÞ � ðw; f ÞX ¼ 0; ð9Þ
where
Bðfw; qg; fu;pgÞ ¼ w;q
@u
@t

� �
X

� ðrw;qu� uÞX þ ðq;r � uÞX � ðr �w;pÞX þ ðrsw;2lrsuÞX; ð10Þ
and ð�; �ÞX denotes the L2ðXÞ inner product. Provided the velocity and pressure solutions are sufficiently smooth, the strong
and weak statements are equivalent. The weak statement of the problem given in Eq. (9) is the point of departure for the
residual-based variational multiscale (RBVMS) turbulence model to be summarized in the sequel.

2.2. Residual-based variational multiscale (RBVMS) turbulence modeling

The residual-based variational multiscale modeling of turbulence emanates from the theory of variational multiscale
methods [3]. The trial solution and weighting function spaces are split into subspaces that contain coarse and fine scales.
This is accomplished by a multiscale direct-sum decomposition
V ¼ Vh � V0; ð11Þ
W ¼ Wh �W0: ð12Þ
In the above, Vh and Wh are the spaces of coarse scales. These are finite-dimensional function spaces associated with a
numerical discretization (e.g., finite elements, NURBS, Fourier series). On the other hand, V0 and W0, spaces of fine scales,
are infinite-dimensional and represent information that is not present in the discretization (e.g., the Fourier modes beyond
cut-off). It is precisely for this reason that they are called subgrid scales. Eqs. (11) and (12) imply that every member of V and
W can be uniquely written as
fu;pg ¼ fuh;phg þ fu0;p0g; ð13Þ
fw; qg ¼ fwh; qhg þ fw0; q0g: ð14Þ
Substituting (13) into (9) and choosing fw; qg ¼ fwh; qhg (recall that (9) holds for all possible fw; qg 2 W) yields
Bðfwh; qhg; fuh; phg þ fu0; p0gÞ � ðwh;qf ÞX ¼ 0; 8fwh; qhg 2 Wh: ð15Þ
Because fwh; qhg are in a finite-dimensional space, (15) leads to a finite-dimensional system of equations for which the large
scales fuh; phg are the unknowns. The variational statement (15) gives a precise way in which the large scale equations de-
pend on the fine-scale fields.

The fine scales fu0; p0g are not given and their effect in the coarse-scale equations must be modeled. The fine scale equa-
tions, obtained by choosing fw; qg ¼ fw0; q0g in (9), reveal that the fine scales are driven by the residual of the coarse scales
(see [3] for an elaboration and a detailed derivation that we do not repeat here).
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The following simple fine-scale model, which makes the fine scales proportional to the coarse-scale residuals of the Na-
vier–Stokes equations, was proposed in [3] (also see [12,24] for earlier references):
u0 ¼ �sMrMðfuh;phgÞ; ð16Þ
p0 ¼ �sCrCðuhÞ; ð17Þ
where rMðfuh; phgÞ and rCðuhÞ are the coarse-scale residuals of the linear momentum equation and incompressibility con-
straint, namely,
rMðu;pÞ ¼ Ladvðu;pÞ � qf ; ð18Þ
rCðuÞ ¼ r � u: ð19Þ
where sM and sC are strictly positive scalar functions of the mesh (element size and shape, and the polynomial order of the
discretization), time step size, and flow velocity. Their exact definitions are given in [3], and are summarized in the Appendix.
The proposed model for the fine scales (16)–(18) satisfies the following consistency conditions: (1) The fine scales are iden-
tically zero if the discrete solution satisfies the Navier–Stokes equations point-wise; (2) The fine scales also go to zero in the
limit of infinite resolution in both space and time. The former condition is a direct consequence of the residual-based def-
inition of the small scales, while the latter is tied to the design of stabilization parameters.

Using integration-by-parts on the fine-scale terms in (15) and substituting expressions (16) and (17) for the fine scales
leads to the following discrete variational formulation: Find fuh; phg 2 Vh; uh ¼ g on C, such that 8fwh; qhg 2 Vh;

wh ¼ 0 on C,
Bðfwh; qhg; fuh; phgÞ þ Bmodðfwh; qhg; fuh;phgÞ � ðwh;qf ÞX ¼ 0; ð20Þ
where the modeled subgrid-scale terms in Bmod are
Bmodðfw; qg; fu;pgÞ ¼ ðfqu � rwþrqg; sMrMðu;pÞÞX þ ðr �w; sCrCðuÞÞX þ ðfqu � ðrwÞTg; sMrMðu;pÞÞX
� ðrw;qsMrMðu;pÞ � sMrMðu; pÞÞX: ð21Þ
The functions sM and sC in the above equations originate from stabilized finite element methods for fluid dynamics (see,
e.g., [11,19,30,31,49]) and are referred to as stabilization parameters. They were designed and studied extensively in the
context of stabilized finite element formulations of linear model problems of direct relevance to fluid mechanics. These
model problems include advection–diffusion and Stokes equations. The design of sM and sC is such that optimal conver-
gence with respect to the mesh size and polynomial order of discretization is attained for these cases (see, e.g., [30] and
references therein). Furthermore, enhanced stability for advection dominated flows and the ability to conveniently em-
ploy the same basis functions for velocity and pressure variables for incompressible flow are some of the attractive out-
comes of this methodology. More recently, the fine-scale models of the form given in Eqs. (16) and (17) were derived in
the context of the variational multiscale methods [22,23]. Here sM and sC are interpreted as the appropriate averages of
the small-scale Green’s function, a key mathematical object in the theory of variational multiscale methods (see [29] for
an elaboration).

To compare the formulation given by (20) and (21) with a well-know stabilized formulation of the Navier–Stokes equa-
tions of incompressible flow, we formulate the latter as: Find fuh; phg 2 Vh; uh ¼ g on C, such that 8fwh; qhg 2 Vh;

wh ¼ 0 on C,
Bðfwh; qhg; fuh; phgÞ þ Bstabðfwh; qhg; fuh;phgÞ � ðwh;qf ÞX ¼ 0; ð22Þ
where the stabilization terms in Bstab are
Bstabðfw; qg; fu;pgÞ ¼ ðfqu � rwþrqg; sMrMðu; pÞÞX þ ðr �w; sCrCðuÞÞX: ð23Þ
The difference between the stabilized and RBVMS formulations comes from the last two terms in the definition of Bmod in
(21). We will see in the sequel that precisely because of this seemingly small difference RBVMS globally conserves angular
momentum, while stabilized formulation (22) does not. The authors feel that global angular momentum conservation is
important, especially for turbulent flows dominated by rotation.

2.3. Weak Dirichlet boundary conditions

In the presence of solid no-slip walls, the variational multiscale formulation (20) may be augmented with weakly-im-
posed Dirichlet boundary conditions. Weak boundary conditions, which are based on Nitsche’s approach [41] and concepts
from Discontinuous Galerkin methods, were proposed in [6] for the advection diffusion and incompressible Navier–Stokes
equations, and further enhanced in [8,9]. For this case the RBVMS formulation (20) becomes: Find fuh; phg 2 Vh, such that
8fwh; qhg 2 Vh,
Bðfwh; qhg; fuh; phgÞ þ Bmodðfwh; qhg; fuh;phgÞ þ Bwbcðfwh; qhg; fuh;phgÞ � ðwh;qf ÞX ¼ 0; ð24Þ
where the weak boundary condition terms in Bwbc are
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Bwbcðfw; qg; fu;pgÞ ¼ ðw;qðu � nÞuþ pn� 2lrsu � nÞC þ ð2lrsw � n� qn;u� gÞC � ðqðu � nÞw;u� gÞCin

þ ðw;qsBðu� gÞÞC ¼ 0; ð25Þ
The terms on the first line on the right-hand-side of (25) ensure consistency of the formulation. This means equality (24)
holds when fuh; phg are replaced with the exact solution of the Navier–Stokes equations. The terms on the second and third
lines of (25) ensure adjoint consistency. Adjoint consistency means equality (24) holds when fwh; qhg are replaced with the
exact solution of the adjoint Navier–Stokes problem. Adjoint consistency leads to optimal convergence in lower order norms
(see, e.g., [2]) and is seen as an important ingredient in the formulation. Finally, the last terms in (25) guarantee the stability
of the discrete formulation provided the penalty parameter sB is appropriately defined. The penalty parameter was intro-
duced in [6] for a purely numerical version of weak boundary condition enforcement, and its definition was further refined
on the basis of the ‘‘law-of-the-wall” in [8]. See Appendix for the details of sB definition.

The discrete formulation (24) will be used to compute the Taylor–Couette flow in this paper. Note that no constraints on
the solution and weighting spaces at the domain boundary are imposed in the above formulation. The desired boundary con-
ditions are enforced as Euler–Lagrange conditions in a weak sense due to the additional boundary terms Bwbc in (24).

3. Conservative forces and moments for weakly-imposed boundary conditions

Forces and moments are often the quantities of interest in engineering simulation. They depend on stresses, which are
derived quantities in the simulation, and, as a result, have lower accuracy than the primary variables. Improved accuracy
of forces and moments may be attained by defining them using conservation arguments, which we do in this section.

We begin with the RBVMS formulation (24) and introduce a special weighting function fwh; qhgi ¼ fei;0g, where ei is the
ith Cartesian basis vector. We use the index i to indicate that there are d separate test functions, one for each Cartesian direc-
tion. This choice of the test function is permissible, because global constants are in our discrete space. The following equation
is obtained,
ei;q
@uh

@t
� qf

� �
þ Bwbcðfei; 0g; fuh;phgÞ ¼ 0; ð26Þ
which may be re-written as
Z
X
q
@uh

i

@t
� qfi dX ¼ �Bwbcðfei; 0g; fuh; phgÞ; ð27Þ
where uh
i and fi are the components of the discrete velocity and body force vectors, respectively, and the summation on re-

peated indices is implied. The right-hand-side of the above Eq. (27) may be interpreted as the global boundary force or flux
that restores the balance of linear momentum. The components of the conservative force vector, denoted by hi, are obtained
directly from the definition of Bwbc as
hi¼�Bwbcðfei;0g;fuh;phgÞ¼�
Z

C
phni�l

@uh
i

@xj
þ
@uh

j

@xi

 !
nj dC�

Z
Cin

qðuh
j njÞgi dC�

Z
Cout

qðuh
j njÞuh

i dC�
Z

C
qsBðuh

i �giÞdC;

ð28Þ
where Cin and Cout are the inflow and outflow parts of the boundary, respectively, defined in a usual way. Note that the global
force vector is comprised of terms that come from the direct evaluation of the boundary force vector as well as terms that
account for the errors in the satisfaction of the essential boundary conditions. The treatment of inflow and outflow bound-
aries are likewise different. Also note that the fine-scale terms do not influence the global balance of linear momentum, that
is, Bmodðfei;0g; fuh; phgÞ ¼ 0i, which means that the fine scales enter the discrete formulation in a conservative manner with
respect to global linear momentum. The same holds true for the stabilized formulation (22). A simple calculation shows that
Bstabðfei;0g; fuh; phgÞ ¼ 0i, which implies that the stabilization terms do not influence global momentum conservation.

We now consider another choice of the weighting function. We set fwh; qhgi ¼ feijkrjek;0g, where eijk are the components of
the alternator tensor, rj’s are the components of the radius vector r ¼ x� x0, and x0 is a fixed location in Rd. This is a permis-
sible choice for a test function because global linear polynomials are in our discrete space, a consequence of the isoparametric
concept employed in both finite elements and isogeometric analysis. Introducing this weighting function in Eq. (24), gives
0i ¼ Bðfeijkrjek;0g; fuh;phgÞ þ Bmodðfeijkrjek;0g; fuh;phgÞ þ Bwbcðfeijkrjek;0g; fuh;phgÞ � ðwh;qf ÞX: ð29Þ
To examine the individual terms on the right-hand-side on the above equation, we first compute the spatial gradient of the
proposed test function as follows,
reijkrjek ¼
@eijkrj

@xl
ek � el ¼ eijkdjlel � ek ¼ eijkej � ek: ð30Þ
Due to the properties of the alternator eijk, the above gradient is a skew-symmetric tensor, which is orthogonal to any sym-
metric tensor. This observation leads to the following simplifications,
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Bðfeijkrjek;0g; fuh;phgÞ � ðwh;qf ÞX ¼ eijkrjek;q
@uh

@t
� qf

� �
; ð31Þ
where the only terms that survive are the fluid acceleration and body force. Analysis of the modeling terms yields
Bmodðfeijkrjek;0g; fuh;phgÞ ¼ ðeijkej � ek;qsMðrM � uh þ uh � rM þ sMrM � rMÞÞX ¼ 0i; ð32Þ
where the last equality holds because the tensor that includes the residual terms is symmetric.
Combining Eqs. (29)–(31), we obtain
eijkrjek;q
@uh

@t
� qf

� �
¼ �Bwbcðfeijkrjek; 0g; fuh;phgÞ: ð33Þ
The right-hand-side of (33) may be interpreted as defining the components of the boundary torque that ensures a global bal-
ance of angular momentum. The cartesian components of the conservative torque vector denoted by ti are now given by
ti ¼ �Bwbcðfeijkrjekg; fuh;phgÞ

¼ �eijk

Z
C

rjphnk � rjl
@uh

k

@xl
þ @uh

l

@xk

� �
nl dC�

Z
Cin

rjqðuh
l nlÞgk dC�

Z
Cout

rjqðuh
l nlÞuh

k dC�
Z

C
rjqsBðuh

k � gkÞdC

 !
: ð34Þ
As in the case of the conservative force, the above expression for the conservative torque contains terms that arise due to the
lack of exact satisfaction of Dirichlet boundary conditions. The treatment of inflow and outflow parts of the boundary are like
wise different.

Remark. In the case of the stabilized method given by Eq. (22), we compute
Bstabðfeijkrjek;0g; fuh;phgÞ ¼ ðeijkej � ek;qsMrM � uhÞX – 0i: ð35Þ
Comparing Eqs. (32) and (35) we find that the RBVMS formulation globally conserves angular momentum, while the stabi-
lized formulation does not.
4. Turbulent Taylor–Couette flow at Re ¼ 8000

We simulate the turbulent Taylor–Couette flow, which is a flow between two concentric cylinders. This is a very good test
case for verification and validation of numerical formulations for turbulent fluid flow for the following reasons: (1) The flow
exhibits several complex features, such as rotation, curved walls, and highly complex time-dependent evolution of the veloc-
ity and pressure fields, all of which are a challenging to compute; (2) Much is known about this problem experimentally (see,
e.g., [39]), and, very recently, several DNS simulations of this test case were computed [10,44,16], all of which produce high-
fidelity data that may be used for comparison purposes.

The flow domain is the volume enclosed between two concentric cylinders. The inner cylinder is assumed to rotate at
constant angular velocity, while the outer cylinder in stationary. The problem setup and dimensions are shown in Fig. 1.
The problem Reynolds number, Re ¼ UhðR1 � R0Þq=l ¼ 8000, where q ¼ 1 is the fluid density, l ¼ 1=8000 is the dynamic
viscosity, R0 ¼ 1 and R1 ¼ 2 are the cylinder inner and outer radii, respectively, and Uh ¼ 1 is the flow speed at the inner cyl-
inder wall. Periodic boundary conditions are imposed in the axial direction, and no-slip boundary conditions are applied at
the cylinder surfaces.

In the remainder of the section we describe our spatial and temporal discretization and present numerical results for the
Taylor–Couette test case.

4.1. Spatial discretization: isogeometric analysis

To discretize the semi-linear form (24) in space, we use isogeometric analysis, a new computational technology that was
recently introduced in [25]. Isogeometric analysis is based on technologies in computational geometry and computer-aided
design and can be thought of as a generalization of the finite element method. Isogeometric analysis and FEM have many
features in common, such as an underlying variational framework, compactly supported basis functions and geometric flex-
ibility. However, isogeometric analysis has several advantages over FEA and offers new possibilities that do not exist in finite
elements: precise and efficient modeling of complex geometrical configurations and smooth basis functions with degree of
continuity beyond C0. Analogs of finite element h- and p-mesh refinements procedures exist in isogeometric analysis. How-
ever, a unique feature of isogeometric analysis not shared by standard finite elements is the so-called k-refinement, in which
the order of the basis functions is elevated together with continuity. Smooth basis functions that are C1- or higher-contin-
uous can be directly employed to discretize higher-order differential operators (see, e.g., [20] for a recent application of iso-
geometric analysis to phase field modeling of phase separation governed by the Cahn–Hilliard equation.) Furthermore, using
functions of higher continuity in situations when C0-continuous discretizations are sufficient was shown to be beneficial for



Fig. 1. Turbulent Taylor–Couette flow: Problem setup.
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accuracy and robustness of the computational results in numerous situations. A particularly noteworthy increase in accuracy
due to the use of higher-continuity functions was observed in turbulent flow computations in [1].

We make use of isogeomeric analysis based on NURBS (non-uniform rational B-splines) [14,43]. NURBS are built from B-
splines through a projective transformation [18]. They are a standard basis function technology used in computer-aided de-
sign and computer graphics, and the first and most widely employed computational technology in isogeometric analysis.
NURBS have superior approximation power than standard, low-order finite elements [5,17]. Quadratic and higher-order
NURBS can represent all conic sections exactly, which include circular and cylindrical shapes. This fact makes them partic-
ularly attractive for computing flows that involve rotating components, which may be embedded in the stationary flow do-
main without geometrical error [7].

We use quadratic NURBS in the computations. We perform our simulations using a sequence of h-refined meshes to as-
sess the convergence properties of the proposed numerical methodology. The continuity of the basis functions is kept at the
C1 level at mesh knots, which is maximal continuity of the basis that is achievable for a quadratic discretization. We note that
at each level of refinement, quadratic NURBS capture the problem geometry exactly. This would not be the case for linear
finite elements, which approximate the circular geometry using flat polynomial facets. The coarsest mesh is comprised of
32� 8� 16 elements in the azimuthal, radial, and axial directions. With each h-refinement step we double the number of
elements in each parametric direction until we achieve our finest discretization of 128� 32� 64 elements. A uniform mesh
is used in the azimuthal and axial directions. In the radial direction, the meshes are obtained by distributing the knots
according to a hyperbolic tangent function to better capture the boundary layer turbulence. It should be noted that the num-
ber of basis functions in the periodic directions equals to the number of elements in these directions. In the radial direction,
due to open knot vector construction (see, e.g., [25]), the number of basis functions nb is computed as nb ¼ nel þ p, where nel is
the number of elements and p is the polynomial order of the NURBS basis.

4.2. Numerical results

The flow is advanced in time using the generalized-a method [4,13,33] and the nonlinear equations are solved using an
inexact Newton–Krylov approach with the assembled element-by-element preconditioner (see [3] for implementation de-
tails and [9] for the linear equation preconditioning strategy). The time step was set to 0.025 and four Newton iterations
were used in each time step.

Flow statistics are presented in the form of ensemble-averaged mean azimuthal velocity, angular momentum, and azi-
muthal velocity fluctuations, all as functions of the radial coordinate. Velocity data are collected at mesh knots, rotated to
the cylindrical coordinate system (the simulations are done in cartesian coordinates), and averaged over azimuthal and axial
directions as well as time. In all cases, the initial azimuthal velocity profile was set to uh ¼ 0:5 in the domain interior and
uh ¼ 1 and uh ¼ 0 at the cylinder inner and outer walls, respectively. All other velocity components as well as pressure were
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set to zero in the beginning of the computation. The flow was advanced in time until the solution reached a statistically-sta-
tionary state. At this stage, the flow data were collected for the period of 250 non-dimensional time units. We compare our
results to the DNS of Dong [15], who computed this test case using Fourier series in the axial direction and spectral finite
elements in the remaining directions. For an overview of spectral finite elements applied to computational fluid dynamics
and turbulence see, for example, [35].

Fig. 2 shows mean azimuthal velocity results. The coarsest mesh gives a reasonably accurate result, especially considering
how few degrees of freedom are utilized. The accuracy of results improves with the next level of refinement, most notably in
the boundary layer, however, very minor deviation from the DNS result in the core of the domain is still present. At the finest
level of discretization, quadratic NURBS produce results that are practically indistinguishable from the DNS.

Fig. 3 shows convergence of the mean angular momentum that is obtained by multiplying the mean angular velocity with
the fluid density and the radial coordinate. The figure illustrates that in the core of the flow the mean angular momentum is
essentially constant and equal to 0:5qR0U0, a phenomenon observed experimentally and also discussed in [15].
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Fig. 2. Turbulent Taylor–Couette flow: Mean azimuthal velocity.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

〈 u
θ r〉

 /U
0R

0

(r − R0)/(R1 − R0)

32x8x16
64x16x32
128x32x64
DNS(Dong ‘07)

Fig. 3. Turbulent Taylor–Couette flow: Mean angular momentum.
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Fig. 4 shows root-mean-square (RMS) of the azimuthal velocity fluctuations. It is generally accepted that this second-or-
der statistic is harder to converge under mesh refinement than the mean flow. On the coarsest mesh, some deviation from
the DNS is present. The quality of the velocity fluctuation results improves significantly after the first mesh refinement. At
the finest mesh level, the fluctuations are in very close agreement with the DNS (the two curves practically coincide), except
for a slight overshoot near the inner cylinder wall at the location that corresponds to the peak of the azimuthal velocity
fluctuations.

Fig. 5 shows convergence of the magnitude of the torque exerted by the fluid on the inner cylinder wall. The torque is
computed according to the conservative definition given in Eq. (34). The torque data is presented in the form of a torque
coefficient CT that is defined as the following non-dimensional quantity
CT ¼ �
ht3i

0:5pqU2
0R2

0Lz

: ð36Þ
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Fig. 4. Turbulent Taylor–Couette flow: Root-mean-square of azimuthal velocity fluctuations.
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In (36), t3 is the axial component of the torque vector from Eq. (34) and h�i denotes time average. The value of CT that cor-
responds to Test Case G from the DNS calculation of Dong [15] is taken as a reference value. Test case G in the reference cor-
responds to the finest simulation with the identical problem setup to that reported in this paper. Torque coefficient data are
plotted as a function of the number of degrees of freedom employed in the simulations (DOF). DOF is computed as the total
number of basis functions in the discretization times four degrees of freedom per basis function (three velocities and a pres-
sure). The torque coefficient converges to the reference value. Our finest mesh gives an error that is less than 1% of that re-
ported in [15].

Fig. 6 shows isosurfaces of the instantaneous flow velocity magnitude on and near the cylinder walls for the finest qua-
dratic mesh simulation. Note the presence of fine-grained local variations of the flow speed at the inner cylinder wall that is
due to weak enforcement of boundary conditions. Also note that the velocity magnitude drops rapidly within the first ele-
ment at the wall, and fast and slow streaks are formed in the boundary layer. Near the outer wall the turbulent features of
the flow are significantly more coarse-grained and virtually no turbulent features are present at the outer cylinder wall. This
is because of the local Reynolds number of the flow near the outer wall is lower.
5. Conclusions

We presented the application of the RBVMS methodology in conjunction with the weak enforcement of Dirichlet bound-
ary condition to the LES computation of high-Reynolds-number turbulent Taylor–Couette flow. To the best of the authors’
knowledge, no LES efforts were reported for this problem to date. Isogeometric analysis using C1-continuous quadratic
NURBS was employed in the simulations and h-refinement was performed to assess the accuracy of the proposed approach.
We note that due to the ability of NURBS to exactly represent circular geometries, the problem geometry was represented
exactly, without approximation, at all levels of the discretization. Very good accuracy of all statistical data reported was
achieved for this test case, even on very coarse meshes. The results rapidly converged to the DNS, while producing good qual-
ity solutions on coarser grids.

The proposed methodology builds on the weak formulation of the Navier–Stokes equations, and turbulence modeling
does not make explicit use of eddy viscosities. We believe that this in part explains the good numerical performance of
the proposed methodology on this particular problem. The turbulent Taylor–Couette flow is dominated by high rotation
rates of the fluid, which cause problems for many well-accepted eddy-viscosity models (see [47]).

An important contribution of this paper is that the RBVMS formulation was shown to globally conserve angular momen-
tum. This is in contrast to stabilized formulations of fluid flow that are otherwise very similar to the RBVMS formulation.
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Appendix. Definition of stabilization and penalty parameters

In this appendix we provide the definitions of the interior stabilization parameters sM and sC as well as the boundary pen-
alty parameter sB. These definitions are applicable to finite elements and isogeometric analysis where individual element
domains are constructed by means of the isoparametric mapping of a reference element. This mapping denoted by
xðnÞ : bK ! K; x ¼ fxigd

i¼1 are the coordinates of the spatial element K, and n ¼ fnigd
i¼1 are the coordinates of the reference ele-

ment bK . The jacobian of this mapping and its inverse are @xi
@nj

and @ni
@xj

, respectively. The jacobian gives the element length scales
employed in the definition of stabilization and penalty parameters.

Interior stabilization parameters sM and sC are defined as follows (see [3] for the original reference):
sM ¼
4

Dt2 þ uh
i Gijuh

j þ CIm2GijGij

� ��1=2

; ðA:1Þ
and
sC ¼ ðsMGiiÞ�1
; ðA:2Þ
where
Gij ¼
@nk

@xi

@nk

@xj
: ðA:3Þ
In the above definitions, Dt is the time step size, CI is a positive constant of the element-wise inverse estimate that is inde-
pendent of the mesh size (see, e.g., [34]), and summation on repeated indices is assumed. In the simulations presented here,
we take CI ¼ 36.

The boundary penalty parameter is defined as follows (see [8] for the original reference):
sB ¼
u�2

kuh
sk
; ðA:4Þ
where uh
s is the wall tangential or slip velocity defined as uh

s ¼ uh � ðuh � nÞuh;n is the wall outward normal, and k � k denotes
the Euclidean distance. In (A.4), u� satisfies the following set of nonlinear equations:
yþ ¼ uþ þ e�vB e�vuþ � 1� vuþ � ðvuþÞ2

2
� ðvuþÞ3

6

 !
; ðA:5Þ

yþ ¼ yu�

m
; ðA:6Þ

uþ ¼ ku
h
sk

u�
; ðA:7Þ
and has the interpretation of friction velocity. The first equation is the well-known parameterization of the turbulent bound-
ary layer known as Spalding’s law-of-the-wall [46], where v ¼ 0:4; B ¼ 5:5; yþ and uþ are the non-dimensional distance
from the wall and mean fluid speed, respectively, and m ¼ l=q is the kinematic viscosity. y is the vertical distance from
the wall taken as a fraction of the element length in the wall-normal direction, that is,
y ¼ hb

CI
b

; ðA:8Þ

hb ¼ 2ðniGijnjÞ�1=2
; ðA:9Þ
where the second equation gives the wall-normal element mesh size. It can be shown from the above equations that
if the wall-normal mesh size is such that the first element is contained within the viscous sublayer, sB simply
becomes
sB ¼
mCI

b

hb
: ðA:10Þ
This is a purely numerical definition, originally given in [6]. CI
b is a positive constant of the element boundary inverse esti-

mate, that is also independent of the mesh size. We take CI
b ¼ 4 in the simulations.
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